7 research outputs found

    On the spectral distribution of large weighted random regular graphs

    Full text link
    McKay proved that the limiting spectral measures of the ensembles of dd-regular graphs with NN vertices converge to Kesten's measure as NN\to\infty. In this paper we explore the case of weighted graphs. More precisely, given a large dd-regular graph we assign random weights, drawn from some distribution W\mathcal{W}, to its edges. We study the relationship between W\mathcal{W} and the associated limiting spectral distribution obtained by averaging over the weighted graphs. Among other results, we establish the existence of a unique `eigendistribution', i.e., a weight distribution W\mathcal{W} such that the associated limiting spectral distribution is a rescaling of W\mathcal{W}. Initial investigations suggested that the eigendistribution was the semi-circle distribution, which by Wigner's Law is the limiting spectral measure for real symmetric matrices. We prove this is not the case, though the deviation between the eigendistribution and the semi-circular density is small (the first seven moments agree, and the difference in each higher moment is O(1/d2)O(1/d^2)). Our analysis uses combinatorial results about closed acyclic walks in large trees, which may be of independent interest.Comment: Version 1.0, 19 page

    The Phase-I trigger readout electronics upgrade of the ATLAS Liquid Argon calorimeters

    No full text

    The Phase-I Trigger Readout Electronics Upgrade of the ATLAS Liquid Argon Calorimeters

    Full text link
    The Phase-I trigger readout electronics upgrade of the ATLAS Liquid Argon calorimeters enhances the physics reach of the experiment during the upcoming operation at increasing Large Hadron Collider luminosities. The new system, installed during the second Large Hadron Collider Long Shutdown, increases the trigger readout granularity by up to a factor of ten as well as its precision and range. Consequently, the background rejection at trigger level is improved through enhanced filtering algorithms utilizing the additional information for topological discrimination of electromagnetic and hadronic shower shapes. This paper presents the final designs of the new electronic elements, their custom electronic devices, the procedures used to validate their proper functioning, and the performance achieved during the commissioning of this system.Comment: 56 pages, 41 figures, 6 table

    The Phase-I trigger readout electronics upgrade of the ATLAS Liquid Argon calorimeters

    No full text
    International audienceThe Phase-I trigger readout electronics upgrade of the ATLAS Liquid Argon calorimeters enhances the physics reach of the experiment during the upcoming operation at increasing Large Hadron Collider luminosities. The new system, installed during the second Large Hadron Collider Long Shutdown, increases the trigger readout granularity by up to a factor of ten as well as its precision and range. Consequently, the background rejection at trigger level is improved through enhanced filtering algorithms utilizing the additional information for topological discrimination of electromagnetic and hadronic shower shapes. This paper presents the final designs of the new electronic elements, their custom electronic devices, the procedures used to validate their proper functioning, and the performance achieved during the commissioning of this system

    The Phase-I Trigger Readout Electronics Upgrade of the ATLAS Liquid Argon Calorimeters

    No full text
    The Phase-I trigger readout electronics upgrade of the ATLAS Liquid Argon calorimeters enhances the physics reach of the experiment during the upcoming operation at increasing Large Hadron Collider luminosities. The new system, installed during the second Large Hadron Collider Long Shutdown, increases the trigger readout granularity by up to a factor of ten as well as its precision and range. Consequently, the background rejection at trigger level is improved through enhanced filtering algorithms utilizing the additional information for topological discrimination of electromagnetic and hadronic shower shapes. This paper presents the final designs of the new electronic elements, their custom electronic devices, the procedures used to validate their proper functioning, and the performance achieved during the commissioning of this system
    corecore